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The generation of finite-energy packets of X waves is analyzed in normally dispersive cubic media by using
an X-wave expansion. The three-dimensional nonlinear Schrödinger model is reduced to a one-dimensional
equation with anomalous dispersion. Pulse splitting and beam replenishment as observed in experiments with
water and Kerr media are explained in terms of a higher-order breathing soliton. The results presented also hold
in periodic media and Bose-condensed gases.
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I. INTRODUCTION

X waves, originally introduced by Lu and Greenleaf in
acoustics[1,2], can be simply described as a nonmonochro-
matic superposition of plane waves with the same wave vec-
tor component along a given direction of propagation. The
resulting pulsed beam can travel undistorted without either
diffraction or dispersion, even in the absence of a nonlinear
self-action. Such X packets have been the subject of intense
research in several fields, as recently reviewed in[3–5].

The first experimental evidence of X-wave formation dur-
ing nonlinear optical processes was reported in[6]. Subse-
quently, X-related results have appeared in[7–10], including
a theoretical analysis and discussion of the generation and
existence of this class of spatially and temporally localized
waves in nonlinear media[11].

The above-mentioned experimental and theoretical results
have stimulated further investigations on the role of X waves
in nonlinear processes, as well as their description in terms
of linear waves with a convenient envelope approach
[12–23] and their extension to quantized fields[24]. Within
the active field of optical self-invariant pulsed beams(see
among others[25–31]), it was recognized that X waves may
play a fundamental role in all the nonlinear processes encom-
passing spatiotemporal mechanics, well beyond the realm of
quadratic frequency mixing where they had been originally
observed. X waves have been also predicted in periodic me-
dia and Bose-condensed gases[32].

X or progressive undistorted wavesin focusing or defo-
cusing Kerr media can be associated to the instability of
wide beams propagating in the presence of a refractive index
linearly dependent on intensity[33]. This effect has also
been investigated in quadratically nonlinear media[20,24].

Very recently light filamentation with femtoseconds
pulses in water[34] was explained by the “nonlinear X-wave
paradigm” [35]. The authors pointed out that these spa-
tiotemporal packets can be highly dynamic; i.e., they are
continuously generated, undergoing splitting and replenish-
ment with an “average” invariant propagation. Such a picture

points out the robustness of X waves with respect to the
numerous nontrivial effects that may take place ins3+1dD
nonlinear processes. On the contrary, self-trapped light bul-
lets, which do not exist in the absence of a nonlinear re-
sponse, are extremely sensitive to the specific model.
X-wave dynamics seems strongly connected to pulse split-
ting during self-focusing in normally dispersive media, as
originally predicted in 1992[36,37] and later investigated by
several authors[38–45]. Experimental investigation of split-
ting and replenishment has been reported in[46].

The generation of X waves may also be taken as the basis
for the interpretation of the conical emission observed during
the propagation of powerful ultrashort laser pulses in air or
water [34,47–49].

In this paper a preliminary settlement of X-wave nonlin-
ear dynamics is attempted. While the forthcoming theory is
developed with reference to nonlinear optics, as outlined in
[32] it applies to Bose-Einstein condensation(i.e., to “matter
X waves”), as well. The central idea is that, if these wave
packets can be considered somehow as “modes of free
space,” with a given direction of propagationz, then their
nonlinear evolution is essentially two dimensional, involving
z and time. Thus, under certain conditions, the problem can
be reformulated and strongly simplified by adopting the
well-known approach of guided wave nonlinear optics.

Once an appropriate X-wave expansion is determined, it
is not straightforward to write down “coupled X-wave equa-
tions,” in analogy with coupled mode equations, for the
simple reason that these spatiotemporal beams are not nor-
malizable. The first step is then to build finite-energy solu-
tions and then use the resulting superposition of X waves to
investigate nonlinear dynamics. Sections I and II cover the
early stages of this approach. In Sec. III nonlinear regimes
are addressed via a perturbative expansion. This is made le-
gitimate by the fact that progressive undistorted waves do
exist in the absence of nonlinearity. The analysis clarifies in
which sense X waves are robust and may constitute a “para-
digm” for nonlinear 3D+1 dynamics. In Sec. IV, I consider
the highly nonlinear regime. This is possible while limiting
to a specific X wave. If the wave packet is spontaneously
generated during a nonlinear process(e.g., from a bell-
shaped pulsed beam), the resulting picture—for example, the
emergence of breathing solutions—provides a relevant in-
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sight for interpreting reported numerical and experimental
findings. The last sections deal with some corollaries: com-
pression and chirp of X waves and the relation with the in-
tegrable one-dimensional(1D) nonlinear Schrödinger(NLS)
equation. The appearance of an integrable model, enforcing
the use of categories such as “breathers,” and its effective-
ness in interpreting experimental and numerical investiga-
tions, points to an intriguing connection between nonlinear X
waves and solitons.

II. X WAVES FOR THE 3D+1 SCHRÖDINGER EQUATION

The wave equation(at angular carrier frequencyv0) de-
scribing paraxial propagation in normally dispersive media,
at the lowest order of approximation, can be cast as

i]zA + ik8]TA +
1

2k
¹xy

2 A −
k9

2
]TTA = 0, s1d

wherek=v0nsv0d /c and its derivatives provide the disper-
sion. In a reference system traveling at the group velocity of
the medium,t=T−k8z, it is

i]zA +
1

2k
¹xy

2 A −
k9

2
]ttA = 0. s2d

For the sake of simplicity hereafter I will consider radially
symmetric beams, withr =ÎX2+Y2.

Progressive undistorted waves, propagating with inverse
differential velocityb [50], can be retrieved by looking for
solutions of the formA=cst−bz,rdexpsikzzd, thus st; t
−bzd

− kzc − ib]tc −
k9

2
]t

2c +
¹xy

2

2k
c = 0. s3d

If c is written as a superposition of monochromatic Bessel
beams,J0sÎkk9ardexps−iv td, with a in frequency units, the
corresponding spatiotemporal dispersion relation is

− kz − bv +
k9

2
v2 =

k9a2

2
. s4d

In order to have a continuous spectrum alongv, the left-hand
side must be positive, thus ensuring the absence of evanes-
cent waves. This can be achieved, in the simplest way, by
letting kz=−b2/2k9, which gives

Sv −
b

k9
D2

= a2. s5d

Equation(5) implies the existence of two types of X waves:

c/st,r,bd =E
0

`

e−isb/k9+adtJ0sÎk9kardf /sadda s6d

and

c\st,r,bd =E
0

`

e−isb/k9−adtJ0sÎk9kardf \sadda, s7d

with the corresponding “spectra”f /sad and f \sad. They will
be denoted as “slash” and “backslash” X waves, because of

the shape of their spatiotemporal frequency content, as dis-
cussed below(see Fig. 1).

A general linear X-wave solution[51], traveling with in-
verse differential velocityb, is given by

AX = e−isb2/2k9dzfc/st − bz,r,bd + c\st − bz,r,bdg, s8d

which can be rewritten as

AX = e−isb/k9dt+isb2/2k9dzfw/st − bz,rd + w\st − bz,rdg, s9d

with

wXst,rd =E
0

`

e7iatJ0sÎk9kardfXsadda. s10d

The “X” stands for either / or \, andwX corresponds to X
waves of the Helmholtz equation[4].

The spatiotemporal spectrum ofAXsr ,t ,zd is given by the
Fourier-Bessel transform pair

BfAgsk',v,zd =
1

2p
E

−`

` E
0

`

Asr,t,zdJ0sk'rdexpsivtdrdrdt,

Asr,t,zd =E
−`

` E
0

`

BfAgsk',v,zdJ0sk'rdexps− ivtdk'dk'dv,

s11d

it is centered at the shifted central frequencyb /k9, deter-
mined by the velocity,

BfAXg =
1

k'

f /S k'

Îk9k
DdSv −

k'

Îk9k
−

b

k9
Deisb2/2k9+b k'/Îk9kdz

+
1

k'

f \S k'

Îk9k
DdSv +

k'

Îk9k
−

b

k9
Deisb2/2k9−b k'/Îk9kdz,

s12d

and it looks like an X in the angle-frequency plane. The two
terms in Eq.(12) correspond to slash and backslash X waves,
as shown in Fig. 1. Since the pulsed beam travels rigidly(in
modulus), an X-shaped spectrum determines the X shape in
the sr ,td space (roughly, the far field—i.e., the Fourier-
Bessel transform—resembles the near field).

The following relation holds useful for anycXst
−bz,r ,bd:

FIG. 1. Sketch of spatiotemporal spectra of “slash” and “back-
slash” X waves.
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LcX ; Si]z +
1

2k
¹xy

2 −
k9

2
]ttDcX = −

b2

2k9
cX. s13d

Therefore an X wave can also be defined as a solution of
Eq. (2) of the typeAX=Csz,bdcXst−bz,rd with

i
] C

] z
−

b2

2k9
C = 0, s14d

a formulation that will become handy below.
Such a solution contains, in general, an infinite energy.

This is due to the idealized situation(never available in ex-
periments) of a precisely defined velocity(or inverse differ-
ential velocityb). Any finiteness introduced by the experi-
mental setup, such as the spatial extension of the sample,
will in general fade the spectrum line shape around the X,
determining uncertainty inb. I will show below that this can
be described by a packet of X waves, with velocities around
a given value and finite energy. Considering an X wave with
a specific velocity is thus as idealized as considering an el-
ementary particle of given momentum[52].

Before proceeding further I emphasize that entire more
general classes of X waves can be generated as discussed in
[17] or, for instance, by takingkz=−b2/2k9−k2 in Eq. (3).
However, the case consideredsk=0d suffices to represent a
wide class of beams, as will be shown in the next section.

III. X-WAVE EXPANSION AND FINITE-ENERGY
SOLUTIONS

The general solution of Eq.(2) can be expressed by the
Fourier-Bessel spectrum of the field atz=0, denoted by
Ssv ,k'd=BfAgsv ,k' ,0d:

Asr,z,td =E
0

` E
−`

`

Ssv,k'dJ0sk'rdeiskzz−vtdk'dk'dv,

s15d

with kz=−k'
2 /2k+k9v2/2.

By a simple variable change, the field can be written as a
superposition of slash X waves, traveling with different ve-
locities. Letting

v = a +
b

k9
,

k' = Îk k9a s16d

gives

Asr,z,td =E
−`

`

e−isb2/2k9dzC/st − bz,r,bddb, s17d

while being

C/st − bz,r,bd =E
0

`

X/sa,bdJ0sÎk k9arde−isa+b/k9dst−bzdda

s18d

and

X/sa,bd ; X/fAsr,t,z= 0dgsa,bd ; k a SSa +
b

k9
,Îk k9aD .

s19d

An equivalent representation is obtained by backslash X
waves, replacing the equation forv in Eq. (16) with v
=−a+b /k9 and being

X\sa,bd = X\fAsr,t,z= 0dgsa,bd = k a SS− a +
b

k9
,Îk k9aD .

s20d

The variable change(16) corresponds to span thesv ,k'd
space by oblique(slash) parallel lines in Eq.(15).

Equation(18) is a formulation of the “X-wave transform,”
first introduced in[53] and indicated byXfAgsa ,bd. Hence
the spatiotemporal evolution, including diffraction and dis-
persion, can be represented by one-dimensional propagation
of packets with different velocities.

The energy of the pulsed beam is

E = 2pE
0

` E
−`

`

uAsr,t,zdu2r dr dt =E
−`

`

Ebsbddb, s21d

with

Ebsbd ; E
0

` 4p2uX/sa,bdu2

ka
da, s22d

showing thatEb can be taken as the energy distribution func-
tion with respect to the inverse differential velocityb.

Summarizing, an arbitrary beam can be expanded in a
superposition of X waves traveling with different velocities.
Conversely, such a superposition can be used to construct
new classes of physically realizable finite-energy X waves.
To this extent, orthogonal X waves—first introduced in[54]
for the wave equation—are a fruitful approach(see also
[32]). With reference to two(either slash or backslash)
X-wave solutions of Eq.(2), denoted byAX and BX, with
inverse differential velocitiesb andb8 and spectraf andg,
respectively, the inner product can be defined as the integral
of BX

* AX with respect tox,y,t, extended on the whole space:

kBXuAXl =E E E BX
* AX dxdydt

= dsb − b8dE
0

` 4p2gsad* fsad
ka

da. s23d

If f = fp andg= fq by defining(p,q=0,1,2,… andLp
s1d is the

generalized Laguerre polynomial)

fpsad =Î k

p2sp + 1d
Lp

s1ds2DadDae−Da, s24d

with D a parameter with the dimension of time[15], it is

E
0

` fpsadfqsad
a

da =
k

4p2dpq s25d

and the orthogonality condition(Aq=BX andAp=AX) holds:
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kAqsr,t,z,bduApsr,t,z,b8dl = dpqdsb − b8d. s26d

In the following the fundamental slash X wave,with
spectrum

f0sad =
Îk

p
Da exps− Dad s27d

and spatial profile

w/
s0d =E

0

`

f0sadJ0sÎkk9ade−iasda

= −
Îk

p

D

F1 −
kk9r2

ss− iDd2G3/2

ss− iDd2

s28d

will be taken as a prototype of the simplest X wave with
finite power (i.e., converging transverse integral ofuw/

s0du2;
see also[19]). Its intensity profile can be found, e.g., in[32].

WhenXsa ,bd=Csbdfpsad, it is Eb= uCsbdu2 and

E =E
−`

`

uCsbdu2db. s29d

The resulting beam is a finite-energy X wave that spreads
according to a prescribed velocity distribution functionCsbd;
this corresponds to the existence of solutions with an arbi-
trary “depth of focus.”

This kind of wave packet can be written, with reference to
slash X waves, as

A =E
−`

`

Csb,zdc/
sqdsr,t − bz,bddb s30d

(with obvious notation), while being, as above,

i
] C

] z
−

b2

2k9
C = 0. s31d

By introducing the Fourier transform pair ofCsbd,

css,zd =
1

2pÎk9
E

−`

`

Csb,zdeisb/k9dsdb,

Csb,zd =
1

Îk9
E

−`

`

cssde−isb/k9dsds, s32d

with s in time units (s can be roughly kept in mind as the
on-axis temporal variablet), it is from Eq. (31)

i
] c

] z
+

k9

2

]2c

] s2 = 0. s33d

Hence 3D linear propagation of an X-wave packet in a nor-
mally dispersive medium can be reduced to that of a 1D
pulse with anomalous dispersion. The energy is

E = 2pE
−`

`

ucssdu2ds. s34d

As discussed in[32], by expandingXsa ,bd into general-
ized Laguerre polynomials it is possible to express the gen-

eral solution of Eq.(2) by orthogonal X waves(either / or \).
This has been used in[24] as an approach to field quantiza-
tion and applied to quantum optical parametric amplification.

IV. GENERAL PROPERTIES OF X WAVES PROPAGATING
IN THE NONLINEAR REGIME

Since X waves exist even in the absence of a nonlinear
susceptibility, it is legitimate to resort to a perturbative ap-
proach. A basic model for nonlinear optical interactions(un-
der standard approximations) can be cast in the form

i]zA +
1

2k
¹xy

2 A −
k9

2
]ttA = xPNLsz,t,rd, s35d

wherePNLsz,t ,rd is a nonlinear source, weighed byx. After
a straightforward expansion ofA in powers ofx, the relevant
equation is Eq.(35) at any order, where the right-hand side
(RHS) stems from the solutions at lower orders. I will show

below that ifxPNLsz,t ,rd=Pst−b̄z,rd, the evolution accord-
ing to Eq. (35) always provides a spatiotemporal spectrum
corresponding to a progressive undistorted wave. Thus, if an
X wave is taken as the solution of the linear modelsx=0d,
the nonlinearity has the role of “dressing” that solution,
which still continues to exist. Since this result is valid at any
order, it furnishes a general picture of the propagation of
self-invariant beams in the nonlinear regime.

For an X wave propagating in a nonlinear medium,P can
be interpreted as a function of its field and of its complex
conjugate. In the case of harmonic generation,P is some
power of the pump beam, traveling at the group velocity of
the fundamental frequency[55]. What follows can be viewed
as a generalization of what is discussed in[15], with the
inclusion of second-order dispersion and for a wide class of
nonlinear processes(such as third- and higher-harmonics
generation).

In a Kerr medium, with a refractive indexn=n0+n2I, with
I = uAu2 the optical intensity, Eq.(35) becomes

i]zA +
1

2k
¹xy

2 A −
k9

2
]ttA +

kn2

n0
IA = 0. s36d

For the solution at the lowest ordersn2=0d, it is possible to

take either an X-wave packetAX aroundb̄ or a wide pulsed

beam with negligible diffraction(with b̄=0). Higher orders
are obtained in the form(35): at the first the RHS is propor-
tional to AX

2AX
* . As a result of the following analysis, the

correction toAX is still a progressive undistorted wave trav-
eling at the same velocity. Since this can be applied at any
order, linearly self-invariant beams are very robust with re-
spect to the nonlinearity.

By writing A, as a superposition of slash X waves,

A =E
0

` E
−`

`

Csa1,b1,zdJ0sÎkk9a1rde−isa1+b1/k9dst−b1zdda1 db1,

s37d

and inserting into Eq.(35), one obtains
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E
−`

` E
0

` Si
] C

] z
−

b1
2

2k9
CDJ0sÎkk9a1rde−isa1+b1/k9dst−b1zdda1 db1

= Pst − b̄z,rd. s38d

Taking the Fourier-Bessel transform of Eq.(38), multiplying
it by 2prJ0sk'rdexpsivtd and integrating overr and t, one
finds

i
] C

] z
−

b2

2k9
C = X/fPgsa,bdeisa+b/k9dsb̄−bdz, s39d

where Eqs.(16) apply, and

X/fPgsa,bd = kaBfPgSa +
b

k9
,Îkk9aD . s40d

Equation(39) can be readily integrated with the boundary
conditionC=0 at z=0:

Csa,b,zd = − iX/fPg
sinsgzd

g
eifsa+b/k9dsb̄−bd−b2/4k9gz, s41d

with

g =
1

2
FSa +

b

k9
Dsb̄ − bd +

b2

2k9
G . s42d

Equation (41) can be interpreted in thesv ,k'd, or sa ,bd,
planes and shows that, for large propagation distances,C
tends to a Diracd centered atg=0: the propagation acts as a
spatiotemporal filter, selecting specific combinations of fre-
quencies and wave vectors.

The conditiong=0, in thesv ,k'd plane, is

k9

2
Sv −

b̄

k9
D2

−
k'

2

2k
=

b̄2

2k9
, s43d

which gives a hyperbola, as sketched in Fig. 2. It is apparent
that Eq.(43) is the dispersion relation corresponding to Eq.
(3); therefore, the resulting pulsed beam is a progressive un-

distorted wave traveling at inverse differential velocityb̄. In
reported experimental results there is a clear evidence of this
spectral hyperbola(see, e.g.,[56]), as well as of a structured
spectrum[10,47], as that corresponding to the splitting de-
scribed in the following.

The asymptotes over which energy is concentrated corre-
spond to slash and backslash X waves. Thus, in any nonlin-
ear process which can be reduced to Eq.(35), X-wave pack-
ets are spontaneously generated. I like to stress that one of

the arms always starts atv=0, while, in the caseb̄=0, Eq.
(43) yields the exact X-shaped spectrum. The specific fea-
tures will in general depend on the source spectrum, as elu-
cidated below with an example.

Note also that the same analysis holds true, with simple

changes, whenxPNLsz,t ,rd=Pst−b̄z,rdexpsik̄zzd, with k̄z de-

pending on the specific nonlinear process(e.g.,k̄z is the wave
vector mismatch for optical harmonics generation); detailed
cases will be reported elsewhere.

A. Energy of the generated X wave

The energy distribution function is, after Eq.(22),

Ebsbd =E
0

` 4p2uCsa,b,zdu2

ka
da

=E
0

` 4p2uX/fPgu2sa,bd
ka

sinsgzd2

g2 da. s44d

As z→`,

sinsgzd2

g2 → 2pz

ub̄ − bu
dsa − ād, s45d

with

ā ;
bsb − 2b̄d

2k9sb̄ − bd
. s46d

Hence for largez

Eb =
8p3kāz

ub − b̄u
UBfPgSā +

b

k9
,Îkk9āDU2

u0sād, s47d

with u0 the unit step function.
The generated X-wave packet grows with a linear effi-

ciency with respect to the propagation distance. In the case

b̄Þ0, from the conditionā.0 in Eq. (47) it appears that

energy is distributed in the intervalsb,0 and b̄,b,2b̄

when b̄.0 and in b̄,b,0 andb,2b̄ when b̄,0. This
implies thatEb does not have a continuous support(see the

example in Fig. 3, discussed below). For largeub̄u, with suf-
ficiently separated domains alongb, this is expected to pro-
vide pulse splitting. In fact, some components of the gener-
ated X waves will travel at a velocity sensibly different from
the pump wave, and after some propagation length satellite
packets may appear(such as, e.g., those discussed in[35]).

There are two relevant limits for Eq.(47).
As b̄→0—i.e., the pump travels at the linear group ve-

locity of the medium—andā→−b /2k9, it is

FIG. 2. Sketch of the generated spatiotemporal spectrum(sym-

metrized fork',0) when b̄.0. The straight lines are slash and
backslash spectra.
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Eb → 4p3kz

k9
UBfPgS b

2k9
,− Îkk9

b

2k9
DU2

u0s− bd. s48d

Equation (48) shows that only the portion of the pump
spectrum laying on the X spectrum—i.e., on the linek'

=−Îkk9v—contributes to the energy of the generated beam.
The propagation filters out all of the spectral components
that do not belong to an X wave.

The other relevant limit corresponds to a pump velocity
largely different from the linear group velocity of the me-

dium: ub̄u→`. From a physical point of view, the nonlinear
interaction is strongly hampered by the generated beam
which rapidly gets separated from the pump, producing a
typical “Cerenkov emission” halo. From Eq.(47) it is sā
→−b /k9d

Eb → 8p3kubuz

k9ub̄u
UBfPgS0,−Îkk9

b

k9
DU2

u0s− bd. s49d

For largeub̄u the X-wave generation is strongly inhibited, and
exclusively the on-axis spatiotemporal spectrum plays a role.
Only the branchb,0 is relevant in this limit. Furthermore,
because of the factorubu, the energy distribution is expected
to be peaked at some valueb,0, as shown below.

B. Example: Gaussian pump beam

It is instructive to examine an example, by assuming a
Gaussian line shape for the source:

BfPgsk',vd = B0
2expS−

k'
2

DkP
2 −

v2

DvP
2 D , s50d

such thatB0
2 measures the pump beam fluence, andDvP

and DkP provide the on-axis temporal and spatial spectra,
respectively.

In the caseb̄=0 (source traveling at the linear group ve-
locity at v0) the energy distribution function, after Eq.(47),
is

Eb =
4p3B0

2kz

k9
expS−

b2

DbP
2 Du0s− bd, s51d

showing that the generated spectrum encompasses slash X
waves faster than the sourcesb,0d and spreads in velocity
with the characteristic value

DbP
2 = F 1

4sk9d2DvP
2 +

k

4k9DkP
2G−1

, s52d

such that the more the source is spectrally(in space or time)
narrow, the more “ideal”(i.e., unspreading,DbP small) is the
generated X-wave packet.

In the caseb̄Þ0 the situation is more complicated. From
Eqs.(47) and(50), it is Eb=0 whenāsbd,0, while for other
values ofb,

Eb =
4p3B0

2kz

k9

b2 − 2bb̄

sb − b̄d2
expF−

b2

sb − b̄d2

b2 − qPsbb̄ − b̄2d
DbP

2 G ,

s53d

with qP=kDbP
2 /k9DkP

2.
In Fig. 3, I show an example of the application of Eq.

(53), by reporting the normalized energy distributionW
=Ebk9 /4p3B0

2kz. The pump beam, withv0 such that the
wavelength isl0=1 mm, is chosen withDvP=2p /Dt, with
Dt=500 fs, andDkP=Duk0 with Du=0.1 rad. For the me-
dium parametersn0=2,k8>c/n0,k9=360310−28 s2/m. As a
result, bp>10−12 s/m, with a velocity bandwidth>DbPVg

2

>104 m/s, andqp>10−4.
In Figs. 3(a) and 3(b), the two branches are displayed for

b̄=0.01DbP, corresponding to a pump beam velocity ofVP
=0.499 999c. In this case, the energy distribution tends to

that at b̄=0, and no pulse splitting is expected(the two
branches are almost contiguous).

In Figs. 3(c) and 3(d), the two branches are shown for

b̄=0.5DbP, corresponding to a pump beam velocity ofVP
=0.499 966c. Two distinct lobes are present, with the most

energetic peaked aroundb>−2b̄. In this case a satellite
X-wave packet is expected to separate from the pump beam
in propagation.

The X wave will in general split for sufficiently long
propagation, following the peaks ofEb. At higher orders the
resulting packets will become new sources for the perturba-
tion equation, and additional splitting will appear, consis-
tently with the numerical results(see, e.g.,[35,45]).

This is expected in second-harmonic generation, initially

considered in[15], whereb̄ is the temporal walk-off between
the two harmonics(details will be given elsewhere), as well
as in dispersive propagation, as described in[35], and inves-
tigated experimentally in[46]. The spectral widening can
indeed provide sources traveling at a group velocity different
from that atv0s1/k8d.

FIG. 3. Normalized energy distributionW vs inverse differential
velocity b for two different values of pump velocity determined by

b̄. (a) Branchb,0 for b̄=0.01DbP, (b) branchb̄,b,2Db̄P for

b̄=0.01DbP, (c) as in (a) with b̄=0.5DbP, and (d) as in (b) with

b̄=0.5DbP. All quantities are dimensionless.
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In Fig. 3 note the difference in the vertical scale between
panels(a),(b) and (c),(d). In all cases the pump velocity is
about 1/k8, showing that the mismatch between the pump
and the linear group velocities atv0 drastically affects the
generated X-wave spectrum.

With regards to the efficiency of X-wave generation, in

the caseb̄=0, by integrating Eq.(48) it is found

E =
2p7/2B0

2kz

k9
DbP = 4p7/2B0

2kz
DvP

Î1 +
k9kDvP

2

DkP
2

. s54d

The energy grows withDbP—i.e., with the spatiotemporal
spectrum of the pump. After Eq.(54) one finds that, for a
wide spatial spectrum(i.e., largeDkP, corresponding to a
tightly focused pump beam), the efficiency is mainly deter-
mined by the on-axis temporal spectrum. Conversely, for
large on-axis spectrumDvP, the energy of the generated X
wave grows withDkP.

The other relevant limit isb̄@DbP, such that the resulting
energy distribution is solely determined by the branchb,0,
and it is

E =
2p3B0

2zDkP
2

b̄
. s55d

Thus the efficiency is mainly affected by the spatial profile

of the pump beam and it goes like 1/ub̄u, consistently with
Eq. (49).

V. HIGHLY NONLINEAR REGIME: AN EFFECTIVE 1D
NLS EQUATION

Even when using some working hypotheses, it is possible
to deepen the previous study and consider the highly nonlin-
ear regime. I will consider the multidimensional Schrödinger
equation

i]ZA + ik8]TA +
1

2k
¹xy

2 A −
k9

2
]TTA +

kn2

n0
uAu2A = 0. s56d

This may provide the correct trend observed in the experi-
ments, including quadratic nonlinearity in certain regimes
(see, e.g.,[57]) as long as envelope shocks(see [45]) or
higher-order phenomena such as plasma formation play a
negligible role.

Writing A as a X-wave expansion(0,a,` and
−`,b,`),

A =E Xsa,b,zdJ0sÎkk9arde−isa+b/k9dst−bzddadb, s57d

and taking the Fourier-Bessel transform of Eq.(56), evalu-
ated at k'=Îkk9a, and v=a+b /k9, the coupled X-wave
equationsare derived:

i]zXsa,b,zd −
b2

2k9
Xsa,b,zd +

kn2

n0
Qsa,b,zd = 0. s58d

The nonlinear polarization is

Q = X/fuAu2A * ge−isa+b/k9dbz

= kaE Ksa,aW dXsa1,b1,zdXsa2,b2,zd

3Xsa3,b3,zd*dfa + a3 − a1 − a2

+ sb + b3 − b1 − b2d/k9gQsa,b,aW ,bW ,zddaWdbW , s59d

with aW =sa1,a2,a3d, bW =sb1,b2,b3d [58].

Ksa,a1,a2,a3d =E
0

`

J0sÎkk9ardJ0sÎkk9a1rdJ0sÎkk9a2rd

3J0sÎkk9a3rdr dr s60d

and

Q = exphif− sa + b/k9db + sa1 + b1/k9db1 + sa2 + b2/k9db2

− sa3 + b3/k9db3gzj. s61d

A remarkable result is obtained if the solution of Eq.(58)
is approximated by an X-wave packet which, in order to
avoid unnecessary complexities, is centered around the me-

dium group velocity—i.e.,b̄=0. This is standard in usual
coupled mode theory[59]; in the present case a “mode” is an
X-shaped 3D wave packet.

As discussed below, ifz is sufficiently small, it is possible
to take Q>1 in Eq. (59); in this regime, I writeXsa ,bd
= fsadCsbd in order to represent the nonlinear modulation
(with envelopeC) of an X wave. For definiteness, I consider
f = fp, wherefpsad is the spectrum of a basis X wave. IfC is

peaked aroundb̄=0, all components travel nearly at the
same velocity andQ>1. Multiplying by 4p2fpsad /ka and
integrating overa, from Eq. (58) one obtains

i]zCsb,zd −
b2

2k9
Csb,zd +

kn2

n0
E xsb + b1 − b2 − b3d

3Csb1dCsb2dCsb3d*dbW = 0, s62d

with the interaction kernel

xsgd = 4p2E Ksa,a1,a2,a3dfsadfsa1d

3fsa2d* fsa3d*dSa + a1 − a2 − a3 +
g

k9
DdaW .

s63d

Equation(62) is a Zakharov equation, and taking the Fou-
rier transform ofC [see Eq.(32)] one obtains the 1D nonlin-
ear Schrödinger equation:

i
] c

] z
+

k9

2

]2c

] s2 +
kn2

n0
sssducu2c = 0. s64d

Hencethe evolution of an X-wave packet in a nonlinear Kerr
medium can be approximated by an effective1+1D nonlin-
ear Schrödinger equation with a nonhomogeneous nonlin-
earity. The latter, given bysssd with dimensions of an in-
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verse area, is expressed by the Fourier transform of the
interaction kernelx:

sssd = 4p2k9E
−`

`

xsgdeigs/k9dg. s65d

After some algebra it can be written as

sssd =E
0

`

u2pÎk9w/
spdu4r dr , s66d

which is the spatial overlap of the component X-wave profile
at b=0, with

w/
spd = w/

spdsr,sd =E
0

`

fpsadJ0sÎkk9arde−iasda. s67d

Taking for c a solution of Eq.(64) and C its Fourier
transform according to Eq.(32), A reads

A =E Csb,zdc/
spdsr,t − bz,bddb =E css,zdj/

spdsr,t,s,zdds,

s68d

with

j/
spdsr,t,s,zd =

1
Îk9

E e−iss+tdb/k9+isb2/k9dzw/
spdsr,t − bzddb.

s69d

j/
spd can be considered the basis for the wavelet transform

of A with respect to the on-axis temporal variable[60]. If
Q>1, the spreading due to the different velocities of the
component X waves[given by the quadratic terms inb in the
exponential in Eq.(69)], is negligible andj can be approxi-
mated by its value atz=0,

j/
spdsr,t,s,zd > j/

spdsr,t,s,0d = 2pÎk9dst + sdwp
spdsr,td, s70d

and Eq.(68) becomes

A > 2pÎk9cs− t,zdw/
spdsr,td. s71d

The 3D+1 nonlinear evolution problem(56) reduces, un-
der suitable approximations, to a 1+1D model(64). In the
following I will address the hypotheses leading to this result
and to its straightforward consequences.

VI. CONDITIONS FOR OBSERVING SOLITONS

Equation(64) is valid as far asQ>1 in Eq.(59). Writing

Q = expsiuzd, s72d

with

u = sa1 + b1/k9db1 + sa2 + b2/k9db2 − sa + b/k9db

− sa3 + b3/k9db3, s73d

it must beuuuz!1.
u is a quadratic function ofb’s; if db.0 is the velocity

bandwidthsb, udbud and observing that the spectrum of the

fundamental X waves decays as exps−aDd (thus, roughly,
a,1/D), the validity of this approximation leads to a con-
strained maximization ofu. After a simple analysis, it must
be

z!
1

maxsuuud
= zX, s74d

while, if 1 /D,2db /k9, the soliton regime

1

zX
= 2dbS 1

D
+

db

k9
D +

k9

2D2 , s75d

and, if 1 /D.2db /k9, the chirp regime

1

zX
=

4db

D
. s76d

As expected, the smallerdb, the largerzX.
The above can be recast in a much simpler and more

insightful formulation by introducing the dispersionsLdispd
and the diffractionsLdiffd lengths.

If T0=k9 /2db is thes width of c, which in general does
not correspond to the on-axis temporal duration of the pulsed
beam[this holds approximately only in the soliton regime;
see Eq.(71)], it is Ldisp=T 0

2/k9.
If W0=1/Dk' is the beam waist at the center of the pulse,

with Dk' the spatial spectrum, by the general properties of X
waves it issa,1/DdW0=D /Îkk9 andLdiff =kW0

2.
WhenD is much smaller thanT0, the X wave dominates

the whole spatiotemporal beam profile; this isthe chirp re-
gime. Conversely, whenT0,D, the soliton regimeis at-
tained. In this case, the on-axis temporal duration is also
affected by the envelopec, while the X wave mainly deter-
mines the spatial profile[see Eq.(71)].

For instance, assuming to be in the soliton regime(as
witnessed by nontrivial nonlinear dynamics), taking a beam
waist of W0=50 mm and an on-axis temporal durationT0
=200 fs it iszX>8 cm; takingn0=2, k9=360310−28 s2/m,
and l0=500 nm, a value far beyond the propagation dis-
tances reported in experiments[7,46], zX is typically of the
order of the smallest betweenLdisp andLdiff , because it mea-
sures the distance after which the X-wave packet starts to
spread due to its finite energy. Therefore one expects the
approximations leading to the 1D NLS model Eq.(64) to
remain valid at least in the early stages of the dynamics, a
few centimeters in experiments. Whenz increases, the non-
linear response gets reduced because of the sliding between
the component X waves, and the propagation becomes in
essence the linear evolution of the generated X-wave pattern.

Once the validity of Eq.(64) is ascertained, the corre-
sponding nonlinear dynamics is determined by considering
the theeffective nonlinear length LNL=n0/ fkn2ss0dc0

2g, with
c0= ucss=0,z=0du2, which relates to the input peak intensity,
omitting inessential numerical factors, byc0

2=I0W0
2 (i.e., c0

2

is approximately given by the peak power; see below). In the
definition of LNL, the value ofsssd is considered ats=0,
because prominent nonlinear effects are expected near the
peak of the pulsed beam.

The depth of focus of the progressive undistorted wave is
such that the on-axis intensity keeps constant in propagation,
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thus enhancing nonlinear effects. This is quite similar to the
nonlinear dynamics of guided modes, where the tightly con-
fined light may favor nonlinear phenomena.

When the temporal durationT0 of the envelopec is
smaller than the duration of the modulated X wave, approxi-
mately D, as far asLdisp@LNL the nonlinearity will mainly
play as a self-phase modulation. WhenLdisp>LNL the so-
calledN=1 fundamental soliton solution[with a sech profile
for c andN the number of eigenvalues in the inverse scatter-
ing problem of Eq.(64), with sssd→ss0d] is attained. How-
ever, it can be readily seen thatLdisp.zX (in the previous
exampleLdisp>1 m); hence, the X-wave dynamics domi-
nates the dispersion. Even if aN=1 soliton emerges, it es-
sentially behaves as a nondispersing nondiffracting X wave.

The situation can be completely different when the peak
power increases andLNL reduces. In this case the parameter
N, given by ÎLdisp/LNL, becomes greater than unity, and
hence higher-order solitons and breathers are foreseen. They
will be discussed below.

VII. FUNDAMENTAL X WAVE AND FUNDAMENTAL
SOLITON

Under suitable conditions, satisfied in the early stages of
propagation, the nonlinear dynamics of an X wave in a Kerr
medium can be described by the 1D nonlinear Schrödinger
equation with a nonuniform nonlinearity profilesssd, deter-
mined by the spatial(self-)overlap of the progressive undis-
torted wave.

As I have shown earlier, the whole X-wave space is
spanned by the fundamental X waves. The fundamental
X-shaped profile, integrable with respect tor and typically
observed in simulations and experiments, is given byf0sad
=sÎk/pdDa exps−Dad [see Eq.(27)]. I will consider the ef-
fective 1D NLS equation with such spectrum. It can be found
that

uw/
s0du4 =

k2D4

p4

ss2 + D2d2

fss2 + D2d2 + skk9r2d2 − 2ss2 − D2dkk9r2g3 ,

s77d

which gives

sssd =
8k9k

5D2 fsS s

D
D . s78d

fs, plotted in Fig. 4 and such thatfss0d=1, can be evaluated
either numerically or analytically. In the latter case it can be
expressed as[61]

fssmd =
5

512m5H4msm2 − 1ds3 + 14m2 + 3m4d
s1 + m2d2 + 3is1 + m2d2

3FlnS−
i

2m
D − lnS i

2m
D − lnS is− i + md2

2m
D

+ lnS−
isi + md2

2m
DGJ . s79d

Therefore,sssd is a bell-shaped function. Observing that
its spatial extension is of the order ofD, when the on-axis

temporal dynamics is dominated by thec envelope(i.e., the
temporal width ofc is smaller thanD), it can be approxi-
mated byss0d:

ss0d =
8kk9

5D2 >
1

W0
2 . s80d

The last relation stems from the fact that the spatial spectrum
is Dk'>1/W0>Îkk9 /D. The effective NLS equation can
thus be approximately rewritten as

i
] c

] z
+

k9

2

]2c

] s2 +
kn2

n0W0
2ucu2c = 0, s81d

so that the effective nonlinear coefficient has an additional
factor, roughly given by 1/W0

2 (or equivalentlyDk'
2 ), if com-

pared to the plane-wave value. This shows the compensation
of diffraction owing to the X waves, which behave as
“modes of free space.”sssd resembles the mode overlap in a
waveguide and the corresponding support to the nonlinear
response along propagation. This holds valid as long asz
!zX—i.e., as long as the nonlinearity is not averaged out by
the “sliding” of the X waves.

The fundamental soliton[when sssd>ss0d] can be ex-
pressed in terms of the peakc0

2 of the energy distribution
function; it reads

A =E c0sechSÎc0
2kn2ss0d

k9n0
sD

3expFi
c0

2kn2ss0d
2n0

zGj/
s0dsr,t,z,sdds, s82d

which, using Eqs.(71) and (80), can be approximated by

A = 2pÎk9c0 sechSÎ c0
2 k n2

W0
2 k9 n0

tDexpSi
c0

2 k n2

2n0W0
2zDws0dsr,td.

s83d

As anticipated, from the expression ofw/
s0d, the peak intensity

I0 relates toc0 by c0
2=I0W0

2 (omitting inessential factors).
Equations(82) and (83) show the “dressing” mechanism

associated with the nonlinearity: the latter acts only on the
shape of the envelope which, even in the linear limit, would
travel almost undistorted(as far asz!zX). Since this analysis

FIG. 4. Nonlinearity profile induced by the spatial overlap of the
fundamental X wave.
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can be repeated for any X wave, nonlinear X waves are not
numerable families of solutions(like multidimensional soli-
tary waves), but have the same “cardinality” of the “space”
of linear X waves.

Conversely, in spite of this remarkable difference with
solitary waves, the(approximate) validity of an integrable
model such as Eq.(81) seems to establish a strong link with
solitons. Clearly this analysis is far from being a rigorous
settlement of this conclusion, but could stimulate further re-
search. In the following section, I will discuss some addi-
tional consequences of Eqs.(64) and (81), pointing out the
nontrivial nonlinear dynamics of X waves.

VIII. NONLINEARLY CHIRPED X WAVES
AND COMPRESSION

The fundamental X wave and fundamental soliton dis-
cussed above are of limited physical interest, because their
invariant propagation is already “embedded” in their linear
counterpart. IfCsbd is a very narrow function or, equiva-
lently, the s width T0 of css,zd is much wider thanD, the
on-axis profile of the 3D beam is mainly determined by the
X wave. This has been indicated as thechirp regime.

In Eq. (64) the second derivative can be neglected, and
the solution is essentially self-phase modulation

css,zd = A0 expFi
k n2

n0
sssdA0

2zG . s84d

Proceeding as before Eq.(84) yields the approximatenonlin-
early chirped basis X wave

A > 2pÎkÎ I0

W0
wspdsr,tdexpFi

k n2 z

n0I0
fsstdG . s85d

There is a fundamental difference between this type of chirp
and what is typically considered in fiber propagation[62],
determined by the temporal power profileucu2. Even an ide-
alized X wave [corresponding toCsbd proportional to a
Dirac d with respect tob and, hence, to a constantc] is
chirped in a nonlinear medium because of its spatial profile
[reflected infsssd].

Since the earliest work on pulse splitting in normally dis-
persive Kerr media, it has been known that, at the initial
stages, the on-axis temporal spectrum exhibits a double peak
[37]. Figure 5 shows the instantaneous frequency

dv = −
k n2 z

n0I0

dfs

dt
. s86d

For higher-order basis X waves, more complicated spectral
modulations can be expected. It is natural to identify the
origin of this spectral splitting as a consequence of the self-
phase modulation considered here. It is also well stated that a
chirped pulse may compress when propagating under anoma-
lous dispersion. With reference to the two frequencies at the
peaks in Fig. 5, they propagate according to Eq.(64) with
opposite velocities, such that the pulse gets compressed in
the temporal domain. In the pulse splitting considered in
[37], on-axis temporal compression immediately follows the
spectral splitting.

Thus, taking the whole process of pulse splitting and ad-
mitting that an X wave is formed in the initial stage(as in
[33]), the origin of the spectral splitting can be attributed to
self-phase modulation of an X wave. Nonlinear processes are
therefore well suited for generating chirped X waves, such as
those recently addressed in[63].

IX. SPLITTING AND REPLENISHMENT IN KERR MEDIA
AS A HIGHER-ORDER SOLITON

While the fundamental soliton and the chirp provide the
simplest corollaries of Eq.(64), the self-trapped behavior of
the 3D beam is fundamentally due to the X shape. More
interesting dynamics can be described referring to multisoli-
ton solutions(obviously in the soliton regime). The N.1
solitons[62] are natural concepts in explaining splitting and
replenishment, investigated numerically in[35] and experi-
mentally in[46]. Noteworthy, breathing linear X waves have
been reported[64,65].

Even if the replenishment dynamics has been examined
with reference to water while including additional terms to
Eq. (56), the most relevant features are somehow taken into
account by this “simple” model, with plasma formation and
higher-order dispersion playing a perturbative role[35].
Highly nonlinear phenomena, such as the shocks considered
in [45], are expected at very high fluences and will be ne-
glected hereby.

For example, theN=2 soliton[62] provides the approxi-
matebreathing nonlinear X wave

A = 2p
k9

T0
Î n0

kn2ss0d
uS z

LD
,

t

T0
Dw/

s0dsr,td

> −
2k9W0

T0
În0

n2
uS z

LD
,

t

T0
D Dst + iDd

fst + iDd2 − kk9r2g3/2,

s87d

with

usj,td = 4
coshs3td + 3 exps4ijdcoshstd

coshs4td + 4 coshs2td + 3 coss4jd
eij/2. s88d

Figure 6 shows a typical spatiotemporal profile obtained
after Eq.(87). The periodic depletion and replenishment of

FIG. 5. Instantaneous frequency corresponding to X-wave self-
overlap in Fig. 4.
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the X-shaped distribution is apparent. In propagation, the
two-soliton, or breather, solution pulsates and the beam
evolves retaining most of its energy localized, but exhibiting
the nontrivial nonlinear dynamics of the X wave. The gen-
eration of a breather can also be thought at the origin of
splitting in the first stages of propagation. It is also notice-
able that higher-order solitons exhibit the spectral splitting
typically described in numerical simulations.

Before concluding, it is fruitful to summarize the picture
of the splitting and replenishment phenomenon. At the be-
ginning a wide bell-shaped pulsed beam evolves into an X
wave, owing to the spatiotemporal pattern formation of
X-wave instability [33]. Then, an effective anomalous dis-
persion is experienced by the envelope of the finite-energy
X-wave packet, and thechirp regimeis entered with spectral
splitting and on-axis compression. Once the envelope width
is sufficiently reduced, thesoliton regimestarts, and the in-
creased intensity through compression feeds the generation
of a higher-order soliton, or breather. After some spatiotem-
poral oscillations, several mechanisms may intervene to stop
the periodic behavior, e.g., losses(eventually of nonlinear

origin, such as two-photon absorption) or simply that, for
large propagation distances, the nonlinear response average
out due to the sliding between components of the finite-
energy X-wave packet.

X. CONCLUSIONS

Progressive undistorted waves, a generalization of the
nonmonochromatic realm of self-invariant beams, seem to
emerge as a valuable tool in numerous fields of applied re-
search, from telecommunications to biophysics(supported
by the recent experiments in water). Their natural appearance
in nonlinear processes, analyzed hereby in the optical do-
main but also available in acoustics as well as in Bose-
Einstein condensation, can be considered a fundamental re-
sult. The formation of X waves during frequency generation
appears as natural as the use of their paradigm in interpreting
3D+1 nonlinear dynamics.

While X waves are known to carry infinite energy, and
their superposition has been previously employed to build
finite-energy solutions, in this paper I have attempted to es-
tablish a general—albeit preliminary—theoretical framework
for the extension of this approach to the nonlinear case.

The various steps of a basic nonlinear process, such as
pulse splitting in normally dispersive media, can be revisited
in terms of X-wave nonlinear dynamics: from the initial
pulse compression to splitting and replenishment. The results
open the way to the investigation of elastic collisions be-
tween nonlinear X waves, as well as to establishing a link
with parametric solitary waves in quadratic media.

According to standard textbooks, a soliton(or a bullet) is
a nonperturbative solution of a nonlinear wave equation. In
this sense, the nondispersive and nondiffracting wave pack-
ets analyzed here cannot be considered solitons, because they
exist even when a nonlinear susceptibility lacks. Neverthe-
less, an intriguing connection between progressive undis-
torted waves and solitons seems to be at the inner stem of
numerically and experimentally investigated phenomena. In
this respect nonlinear X waves can be considered a sort of
chimeraof modern nonlinear physics.
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